The Complexity of Context-Aware Deep Learning – We propose a new method to solve the problem of finding the shortest path between two data points. The proposed algorithm is based on a simple and computationally efficient algorithm called the Monte Carlo method. A large number of experiments were performed among different tasks including video content classification, scene understanding and human action prediction in video-based environments. The method shows promising results in both challenging problems.

Computing the convergence rates of Markov decision processes (MDPs) is a fundamental problem in many areas of science, medicine and artificial intelligence. In this article we present a systematic method for automatically predicting the expected values of Markov decision processes (MDPs) and related statistics in real-world datasets. The main difficulty of this approach is that it is intractable to perform fast computations of this kind. We propose an algorithm to calculate the expected value of a MDP, as well as some benchmark algorithms for the MDP. The algorithm is based on a variational model that exploits the stochastic variational approach. We also consider the problem of finding the optimal sample size for the algorithm. Based on this theory, we propose a scalable algorithm using the optimal sample size and the variational model for the algorithm. We show that the algorithm performs comparably to the variational model and provides a high accuracy in predicting when MDP data is available.

Dense Learning for Robust Road Traffic Speed Prediction

A Hierarchical Segmentation Model for 3D Action Camera Footage

# The Complexity of Context-Aware Deep Learning

A Novel Multimodal Approach for Video Captioning

Fast Convergence Rate of Matrix Multiplicative Matrices via Random ConvexityComputing the convergence rates of Markov decision processes (MDPs) is a fundamental problem in many areas of science, medicine and artificial intelligence. In this article we present a systematic method for automatically predicting the expected values of Markov decision processes (MDPs) and related statistics in real-world datasets. The main difficulty of this approach is that it is intractable to perform fast computations of this kind. We propose an algorithm to calculate the expected value of a MDP, as well as some benchmark algorithms for the MDP. The algorithm is based on a variational model that exploits the stochastic variational approach. We also consider the problem of finding the optimal sample size for the algorithm. Based on this theory, we propose a scalable algorithm using the optimal sample size and the variational model for the algorithm. We show that the algorithm performs comparably to the variational model and provides a high accuracy in predicting when MDP data is available.